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We present a transport-based method for electrons that incorporates the 
correct transport mechanics and is computationally efficient for 
implementation in single event Monte Carlo codes. The method yields 
accurate dose profiles across a broad range of energies in heterogeneous 
media and presents a viable alternative to the established condensed 
history method. Our approach is mathematically rigorous, building on 
higher order Fokker-Planck and Boltzmann Fokker-Planck 
representations of the scattering process, and we accordingly refer to it as 
a Generalized Boltzmann Fokker-Planck (GBFP) approach. We postulate 
the existence of single collision scattering distributions (differential cross 
sections) and impose the constraint that the first few momentum transfer 
moments be identical to corresponding analog values. Details of specific 
moment-preserving strategies are described. Results are presented for 
dose in heterogeneous media due to a pencil beam of monoenergetic 
electrons. The computational efficiency of our GBFP formulations are 
contrasted against two different condensed history implementations.

Introduction
The condensed history method (Berger, 1963) has long been used for electron 

transport calculations, and the theoretical basis of the method has been extensively 
evaluated (Larsen, 1992; Kawrakow and Bielajew, 1998). Condensed history has proven 
to be an effective approach for modeling realistic transport problems. However, it is 
known to have some deficiencies, such as inaccuracy near material boundaries and not 
distinguishing between pathlength and displacement. Several “fixes” have been 
implemented but the fact remains that the algorithm is often fundamentally altered in 
order to circumvent the inherent shortcomings.  In recent years several methods have 
been proposed as alternatives to the condensed history technique (Tolar and Larsen, 
2001; Pomraning, 1996; Prinja and Pomraning, 2001; Leakeas and Larsen, 2001). A 
common feature of these methods is that an approximate transport problem is solved, 



characterized by a longer mean free path and a less forward peaked differential cross 
section than analog values. These approximate schemes differ in the strategies employed 
to construct model cross sections but a hallmark of all approaches is that accuracy can be 
systematically increased by retaining increasingly more accurate physics; indeed several 
of these methods limit to analog accuracy. Moreover, the correct transport mechanics is 
naturally accommodated with the use of an explicitly linear transport (Markovian) 
formulation as the physical and mathematical basis of the approach. In particular, with 
Poisson collision statistics, the new algorithms handle material and vacuum interfaces 
naturally. That is, no alteration of the tracking algorithm is necessary for boundary 
crossings. All of these features combine to make computationally efficient single event 
Monte Carlo simulation feasible for charged particles in general and electron transport in 
particular. 

Theoretical analysis shows that sensitivity of the transport process to elastic scattering 
is well captured by angular moments of the underlying differential cross section, 
specifically the generalized momentum transfer moments. It is well known, for instance, 
that if scattering is sufficiently forward peaked the Boltzmann scattering operator can be 
approximated by the angular diffusion or Fokker-Planck (FP) operator with the diffusion 
coefficient given by the transport cross section, which is just the first momentum transfer 
moment. Moreover, it has been shown that large scattering-angle effects can be 
incorporated using higher order Fokker Planck expansions and this essentially amounts to 
an expansion in higher order momentum transfer moments. However, truncated higher 
order FP expansions are not mathematically stable and the challenge is to construct 
equivalent Boltzmann collision operators that possess the same generalized FP expansion 
up to a finite order as the analog case. This can be achieved in practice by preserving an 
appropriate number of momentum transfer moments in conjunction with a strategy to 
construct a suitable scattering kernel. Here we demonstrate a number of such strategies 
which prove computationally efficient and accurate for energetic electron transport. Our 
approach builds on higher order Fokker-Planck and Boltzmann Fokker-Planck 
representations of the scattering process, and we accordingly refer to it as a Generalized 
Boltzmann Fokker-Planck (GBFP) approach. 

Various strategies are presented in the next section and their numerical 
implementation for a heterogeneous medium are later demonstrated. The accuracy of the 
methods is assessed using analog benchmark calculations. We present a comparison of 
computational efficiencies of the GBFP methods and condensed history methods. We do 
not consider inelastic scattering in this paper and use the continuous slowing down (CSD) 
approximation to simplify the comparison of our GBFP and condensed history angular 
scattering algorithms. The GBFP approach to inelastic scattering has been considered 
elsewhere (Prinja and Harding, 2003; Franke and Prinja, 2005) and is independent of the 
elastic scattering approximation.

GBFP Angular Scattering Models
The angular flux Ψ(r,E,Ω) of electrons at spatial location r(x,y,z) traveling in 

direction Ω(µ,θ) with energy E satisfies the following transport equation,



(1)

where σs(r,E) is the total electron scattering cross section, σs(r,Ω·Ω’,E) is the differential 

scattering cross section and S(r,E) the material stopping power. The true differential cross 
section (DCS) for electron scattering is highly peaked about Ω·Ω’≡µ0=1 while the 

corresponding total scattering cross section is large. As a consequence, this analog 
problem is computationally very expensive when implemented in single event Monte 
Carlo. For the following discussion, we define momentum transfer moments of the elastic 
DCS as

(2)

The essence of our method is to replace the analog DCS by an approximate DCS, 
such that the associated momentum transfer moments are identical to the exact moments 
for n = 1, 2, …N, where N is arbitrary but finite. All higher moments, as well as σ0, are 

approximated in terms of these N moments. By not rigorously preserving all momentum 
transfer moments we are modeling a scattering process with a longer mean free path 
(mfp) than the actual mfp and a less peaked angular-scattering distribution. On the other 
hand, strictly preserving a number of low-order moments should ensure some measure of 
accuracy. This approach is motivated in part by Lewis theory (Lewis, 1950), which 
demonstrates a direct correlation between preserving moments of the DCS and the 
accuracy of the model as measured by space-angle moments of the infinite medium 
solution, and in part by the effectiveness of moment-preservation in Generalized Fokker-
Planck expansions (Pomraning, 1996; Prinja and Pomraning, 2001; Leakeas and Larsen, 
2001).

We have implemented this method with several forms of the approximate DCS: 
purely discrete scattering angles (Franke and Prinja, 2002a), a discrete scattering angle 
hybridized with a smooth screened Rutherford kernel (Franke and Prinja, 2002b), and an 
exponential scattering distribution hybridized with a smooth screened Rutherford kernel 
(Prinja and Franke, 2004). We briefly describe each of these scattering kernels in the 
following subsections.

Discrete
Perhaps the simplest approach, conceptually and practically, is to represent the 

approximate DCS as a superposition of discrete scattering angles, as follows:

(3)

The scattering amplitudes αn and scattering cosines ξn are then constrained to yield 

the exact first 2N momentum transfer moments as given by Eq. (2). This condition yields 
a nonlinear algebraic system for the αn and ξn that can be solved using a robust 

algorithm by Sloan (1983). Discrete angle representations were first introduced in neutral 
particle transport in the MORSE code (Straker et al., 1970) and the idea was subsequently 
extended by Sloan (1983) and Morel et al. (1996) for peaked scattering. This approach, 



while easy to implement and potentially very accurate, displays ray-effects in transmitted 
and reflected angular distributions when few discrete angles are used and when the 
material is optically thin. The next two sections describe methods devised to mitigate ray-
effects without affecting the moment-preserving feature of this approach. 

Hybrid Discrete
Ray-effect mitigation in the discrete scattering-angle formalism can be realized by the 

superposition of a continuous in angle, or smooth, component that has a long associated 
mean free path, is not forward peaked, and is easy to sample from. Furthermore, by 
requiring the large scattering angle shape and amplitude of this smooth component to be 
close to the corresponding analog cross section, the higher angular moments will be 
accurately captured. For the screened Rutherford DCS this decomposition into discrete 
and smooth components can be effected as follows:

(4)

The first term is just the screened Rutherford scattering kernel (Evans, 1976) but with η* 
chosen to yield a long mfp and hence a smooth angular distribution. The second term is 

the discrete scattering-angle model discussed in the previous section. The choice of η* is 

somewhat arbitrary, providing that it is larger than the analog value. A larger value of η* 
produces a greater speed-up but is more approximate. The strategy we have adopted is to 
select this parameter to give a smooth component mean free path that is related to the step 

size in condensed history methods. Once η* is thus chosen, the discrete scattering cosines 
and amplitudes are calculated by preserving the residual cross section moments. 
Numerical testing has shown that ray-effects with just one discrete component are greatly 
reduced with the addition of a continuous component.

Hybrid Exponential
A completely continuous scattering kernel that preserves enough angular moments of 

the DCS can eliminate the ray-effects caused by discrete-angle scattering. We have 
shown using a Generalized Fermi expansion (Prinja and Franke, 2004) that a kernel based 
on exponentials can rigorously preserve angular moments while remaining robust. Our 
specific numerical implementation has included a single exponential, which exactly 
preserves the first two momentum transfer moments, and an exponential kernel 
hybridized with the smoothed Rutherford part to capture both forward-peaked and large-
angle scattering components. The latter decomposition can be expressed as:

(5)

As with the hybrid discrete kernel, η* is chosen to yield an appropriately long mfp and a 
smooth angular distribution. The parameters A and β are calculated from the residual 
cross section moments.



Computational Methods
The computational results presented here are obtained with restricted physics both for 

simplicity of implementation and to isolate the effects of the angular scattering 
algorithms being tested. Thus, no secondary photons or electrons are simulated, a 
continuous-slowing-down (CSD) approximation is used in all calculations, and analog 
angular scattering is modeled using the screened Rutherford scattering model (Evans, 
1976). The energy dependence of the simulation is accomplished by defining physical 
parameters on an energy grid. These parameters are generated by the XGEN cross section 
generating code (Halbleib et al., 1992). 

The method we label as “ITS-like” condensed history applies the multiple-scattering 
angular deflection of the particle at the end of each step, i.e. the end of the pathlength for 
which the angular deflection has been precomputed. The algorithm differs from the 
implementation in the ITS codes in that: our angular distribution is based only on 
screened Rutherford scattering and ignores inelastic scattering angular deflection; we 
sample from the precomputed angular deflection distribution nearest in energy to the 
particle energy when the angular deflection is applied; and we have implemented a 
simpler (and less accurate) material boundary crossing algorithm. These modifications 
simplify the implementation and provide a consistent basis for comparison with the 
analog calculations and GBFP methods. The same simplifications apply to the “Random 
Hinge” condensed history algorithm. It differs from the ITS-like algorithm only in that 
the angular deflection of the particle is applied at a uniformly sampled random position 
within each step. 

There are many intricate algorithms that have been proposed to cope with the 
boundary crossing problem in condensed history methods [see Jensen (1988), for 
example]. We have implemented an admittedly simple boundary crossing algorithm. 
When a material interface is encountered in GBFP or analog transport, the sampled 
distance-to-collision is scaled by the ratio of the total cross sections in the two materials, 
such that the distance is preserved as measured in mean free paths. This is the correct 
transport treatment.  When a material interface is encountered in condensed history, we 
preserve the fractional step-size remaining between the two materials. This is an 
approximation for the condensed history algorithms.

Results
To test the methods described in this paper and to compare their efficiencies against 

condensed history methods, two problems have been simulated.  Both consist of a pencil 
beam normally incident on a block of material with a second material, with a higher 
atomic number (Z) and higher density, inserted through half of the block, such that the 
material interface is aligned with the incident beam.  In the first case, illustrated in Fig. 
1(a), we simulated 10 MeV electrons incident on a block of water with a slab of cortical 
bone included.  In the second case, illustrated in Fig. 1(b), we simulated 200 keV 
electrons incident on a block of silicon with a slab of gold included.



Figure 1. The problem geometries for (a) a high-energy beam on low-Z materials 
and (b) a low-energy beam on higher-Z materials.

The dose distributions for the two problems were calculated with each of the 
approximate scattering kernels and with the analog scattering kernel. The dose was 
integrated through the block in the X dimension (such that the effect of the material 
interfaces can be observed).  The dose distributions for the analog benchmark 
calculations are shown in Fig. 2. The energy deposition in these plots is shown in keV per 
gram per source electron. The normalization by density accounts for the lowered 
deposition values in the gold region of Fig. 2(b).  The difference in density between water 
and bone is not large enough to produce such a visible discontinuity in Fig. 2(a).

(a)                                                           (b)

Figure 2. Benchmark dose distributions in keV/g calculated with analog elastic 
scattering for (a) a high-energy beam on low-Z materials and (b) a low-energy beam 
on higher-Z materials.

Efficiency
A suite of calculations was performed with each of the approximate scattering kernels 

by varying a parameter that affects the mean distance between interactions. For the 
condensed history methods, the step length was varied. For the hybrid discrete and hybrid 
exponential kernels, the mean free path of the smooth screened Rutherford component 
was varied. For the discrete scattering-angle kernel, the number of discrete angles was 
varied (unlike the other kernels, this does not vary continuously). Shorter mean distances 
between interactions produce increased computational expense of the calculations and are 
expected to increase the accuracy.  For each of these approximate calculations, the 
distribution of the error in the dose was calculated relative to the analog calculation. 
Here, we examine the efficiency of the methods by evaluating the accuracy of the method 
versus the computational expense. 

For the geometries discussed in the previous section and illustrated in Fig. 1, the error 
versus runtime is displayed in Fig. 3. While the results shown are informative, we offer 
two points of caution. We have chosen to measure error as an L2-norm of the relative 

error over the entire problem geometry. Other measures of error are possible, which could 



emphasize different aspects of the solution or give different weightings to the errors. 
Also, the runtime comparisons presented here should be considered approximate. 
Undoubtedly, some algorithmic improvements could be made to accelerate each of the 
implementations, and runtime variations would be experienced with different compilers 
or computer architectures.

    

(a)                                                                 (b)

Figure 3. The L2-norm of the relative error of approximate methods versus 

computation time for (a) a high-energy beam on low-Z materials and (b) a low-
energy beam on higher-Z materials.

In assessing error and runtime there are factors that we have attempted to remove. To 
obtain detailed dose results, particles were tracked through a Cartesian tally grid, and this 
tracking was the dominant fraction of runtime for the faster calculations. In a production 
implementation of the methods, it would not be necessary to track particles on the refined 
grid on which dose is being tallied. Therefore, the runtimes presented are for calculations 
that omit the detailed tally grid. Instead runtimes are based on identical calculations with 
minimal geometry boundaries for defining the problem. In assessing the error of the 
methods there is statistical uncertainty in both the analog benchmark and approximate 
results. This statistical uncertainty is the dominant factor in the relative difference 
between the two dose distributions for the more accurate calculations. Using two 
independent analog benchmark calculations, we have estimated the contribution of 
statistical uncertainty to the calculation of the L2-norm of the relative difference and 

subtracted it from all results. For the high-energy, low-Z problem, this statistical 

uncertainty factor was 1.434×10-2 ± 4.2×10-4. For the low-energy, high-Z problem, this 

statistical uncertainty factor was 6.52×10-3 ± 7.3×10-4.

The important sources of error can be discerned by studying the individual error 
distributions. These results are too numerous to include here, but we offer a few samples 
and some general observations that can be made. In Fig. 4, we show the relative 
difference between approximate and benchmark results for the high-energy, low-Z 
problem. (We define the relative difference as one minus the ratio of the approximate 
result to the analog benchmark result.) The four results shown are for four different 
methods, with each approximate calculation requiring about 2000 seconds. 

    

Figure 4.  Relative error in approximate methods with comparable runtimes for the 
high-energy, low-Z problem using (a) hybrid discrete GBFP, (b) hybrid exponential 
GBFP, (c) random hinge condensed history, and (d) ITS-like condensed history.

We observe that in all of the methods there are significant errors at the bottom of the 



block as the beam initially penetrates the material and disperses. This source of error is 
smallest for the random hinge and greatest for the ITS-like algorithm, with the errors in 
the GBFP methods falling in between for comparable runtimes. In all cases, these errors 
are due to overestimation of the uncollided flux, manifested as overestimation of the dose 
by the approximate method along the central axis of the beam and underestimation of the 
dose at the periphery of the beam.

In Fig. 5, we show the relative difference between approximate and benchmark 
results for the low-energy, high-Z problem. The four results shown are for four different 
methods, with each approximate calculation requiring about 20000 seconds. In this 
second problem, with weakly anisotropic scattering, similar errors due to overestimation 
of the uncollided flux were observable in all methods.  However, the error for the 
condensed history results was dominated by error in the gold region of the problem. It is 
not clear whether this is due to difficulty modeling the weak anisotropy of scattering in 
the gold, due to the error introduced by the material interface, or due to a combination of 
the two effects.

    

Figure 5.  Relative error in approximate methods with comparable runtimes for the 
low-energy, high-Z problem using (a) hybrid discrete GBFP, (b) hybrid exponential 
GBFP, (c) random hinge condensed history, and (d) ITS-like condensed history.

By the measures presented here, the random hinge and hybrid discrete kernels 
generally look most appealing, and the ITS-like method generally looks least appealing. 
However, no single kernel performs best in all circumstances.

Conclusions
The GBFP methods offer computational efficiency comparable to the widely-used 

random hinge condensed history method. The weaknesses of condensed history methods 
include approximation near material interfaces and, for the ITS-like algorithm, 
underestimation of reflected electrons. Unlike condensed history methods, the GBFP 
methods remain accurate and retain algorithmic simplicity in the presence of material 
interfaces. The weakness of the GBFP methods is overestimation of the uncollided (and 
few-collided) flux at shallow depths. Just as strategies have been developed to 
compensate for the weaknesses of condensed history methods, strategies may be 
developed to mitigate this weakness of the GBFP methods. The contrasting strengths and 
weaknesses of the two electron transport strategies may make one or the other more 
appropriate for a given class of problems. The accuracy and efficiency of the GBFP 
method makes it a viable alternative to condensed history methods.
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